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Abstract—Nonintrusive load monitoring, i.e., the process of

identifying individual load information from aggregate electrical

measurements, is useful for a variety of smart grid applications

including energy scorekeeping, condition monitoring, and activity

tracking. Numerous load disaggregation algorithms have been

used for nonintrusive monitoring. Many of these perform well

only on certain datasets or load types, because transient electrical

events can occur on vastly different time-scales and operating

schedules with significantly different regularities. This paper

presents a nonintrusive load monitoring framework that allows

multiple algorithms to be used across multiple time-scales, with

their outputs combined to enhance load recognition. Results are

demonstrated with power system data from a United States

Coast Guard Cutter (USCGC), demonstrating the utility of

the framework for developing applications for condition-based

maintenance, among other applications.

Index Terms—Condition-based maintenance, energy efficiency,

fault detection, nonintrusive load monitoring

I. INTRODUCTION

Research on nonintrusive load monitoring tends to focus on
disaggregation techniques aimed at incrementally improving
various accuracy metrics, often a percentage of load operation
or power consumption identified in an aggregate power stream
[1], [2]. Fundamentally, nonintrusive monitoring is ad hoc
and conjectural. A nonintrusive load monitor (NILM) will
not be perfect under all conditions because load classifica-
tion algorithms depend on the type and number of target
loads in the data set, and the features associated with the
load transients [3], [4]. Additionally, nonintrusive monitoring
scenarios present uncertainties in load composition over time
due to changing load mix, abnormal load behavior, or other
disturbances. No single load disaggregation algorithm will best
serve every application. There is also no “correct” way to
assess accuracy that is significant for all applications [4].

The application matters. Different approaches for nonintru-
sive disaggregation allow a trade-off between computational
complexity in monitoring, accuracy in determining necessary
information for a given application, and flexibility in deal-
ing with changing load compositions. For example, energy
scorekeeping in residential homes differs substantially from
system diagnostics in an industrial manufacturing center. Ac-
curate identification of a subset of loads with a reasonable
computational complexity may be more important that total
consumption characterization [5], [6].
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This paper presents a multi-scale, multi-algorithmic frame-
work for organizing the signal processing for nonintrusive
monitoring. Our goal in this paper is not to compare methods
on a particular set or sets of power data. The utility of
the framework presented here has been assessed with field
demonstrations and results for various applications, including
on US Coast Guard ships [7]–[9], at a school [10], and on
a US Army microgrid [11]. The framework presented and
reviewed in this paper represents the distilled effort of years
of field testing of different signal processing approaches for
nonintrusive load monitoring. Since the physical task a load
is performing is reflected in the way these loads consumes
energy, the framework appropriates the signal processing tools
for finding these features in the observed data. The framework
is an example and a guide that permits orderly application
of computing resources for a nonintrusive load monitoring
problem. It can be tailored to any specific application; it
easily incorporates different disaggregation techniques while
remaining focused on fundamental physical features of the
energy consumption of each load. Do transients vary over time
and duration? Are they randomly distributed or repeatable? Do
they present harmonic content to the utility? These features
and others form the foundation for nonintrusive load identifi-
cation. New statistical analysis techniques are introduced here
as part of this framework, to improve identification of loads
which do not have a repeatable load transient.

The details and results of this framework are demonstrated
on a 270 ft (82 m) United States Coast Guard Cutter (USCGC),
SPENCER. In environments such as the microgrid of a ship,
signs of impending failure in mission-critical equipment are
often visible in the electrical system weeks before an abrupt
fault occurs [12]. Thus, information provided by a NILM
system can provide invaluable feedback for aiding in opti-
mizing operations and reducing equipment failures [7], [8].
Disaggregated load events are used in conjunction with the
NILM dashboard [13] graphical platform, to deliver a timeline
of load activity and diagnostic metrics to Coast Guard person-
nel for real-time monitoring and diagnostic focused analytics.
Following a literature review in Section II, Section III presents
the signal processing framework for organizing nonintrusive
event detection, organizing a full suite of deterministic and
statistical tools. Section IV describes the use of the framework
and presents results as applied to a case study on SPENCER.

II. NONINTRUSIVE LOAD MONITORING

In an electrical system there are four main behaviors of
loads: On/Off, Finite State Machine (FSM), continuously vari-

able, and continuously on [3]. Both On/Off loads and FSM

loads have sequences of changes of state that are clear step
changes in power, and consume a constant amount of power
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at each state or operating mode. An On/Off load has only two
states, on or off, while a FSM load has several operating states
due to its complex operation. The load transient acts as a load
signature allowing NILM algorithms to identify the state of the
loads. A continuously on load consumes a constant power draw
for days, or even weeks at a time. These loads can be identified
if the initial on event is observed or with the use of optimiza-
tion techniques [14]. Finally, a continuously variable load has
a variable power draw, and does not have a fixed number of
states. This means there may not be repeatability in the power
draw characteristics and it will be difficult to detect these loads
using identification approaches that rely on steady state. One
subset of continuously variable loads are those controlled by
power electronics, including variable speed drives (VSDs) and
dimmable lighting. The use of power electronics enables many
loads to operate over a wide variable power range; thus there
may not be a unique power consumption pattern. However,
the power electronics contribute to significant higher order
harmonics and a waveform based estimator can be used to
estimate the real and reactive power consumed by variable
power loads [15]. In contrast, another subset of continuously

variable loads are not controlled by power electronics and
don’t have significant higher order harmonics, but have a
power draw that appears practically stochastic. These loads
may reach a steady state, but the time it takes to reach the
steady state is highly variable and the load may not remain in
steady state for the full operation. In order to correctly identify
this subset of loads, referred to here on as “statistical loads”,
a statistical based method for load identification is presented
in this paper as part of the identification framework.

A. Previously Reported Disaggregation Techniques

There have been many disaggregation techniques proposed
in nonintrusive monitoring research. Disaggregation tech-
niques can be broadly categorized into event based or non-
event based approaches, depending on whether load signatures
are extracted from the power signals or not. Non-event based
techniques include optimization, such as linear programming,
which attempts to minimize the error between an extracted
feature vector and a database of known loads [14]. For event-
based approaches, some commonly used load features include
steady state step changes in power [16], harmonic frequency
content [17], transient shapes [18] and voltage-current trajecto-
ries [19]. The load signatures that can be extracted from power
data depend on the frequency of the sensors. Low frequency
meters are lower cost, but typically limit features to steady
state signatures. High frequency meters, in the range of kHz,
allow for increased resolution.

Disaggregation techniques can also generally be divided into
supervised or unsupervised techniques, based on whether or
not a training process with labeled data is required. Super-
vised learning often uses pattern recognition to map detected
events to a specific load. Some examples include artificial and
deep Neural Networks (NN) [20], [21], and Support Vector
Machines [22]. In contrast, unsupervised approaches do not
require labeled training data, such as Independent Component
Analysis [23]. Recently, approaches to combine classification
techniques have been proposed, such as the use of commit-

Fig. 1. Diagram for multi-scale, multi-algorithmic framework.

tee decision mechanisms, a technique that incorporates both
optimization and pattern recognition [24].

Most NILM research has been focused on absolute accuracy
of total load disaggregation, but not deployment cost, usability,
or concrete applications [25]. Our experience is that most
facilities managers and operators are primarily interested in
subsets of information that do not necessarily require flaw-
less disaggregation and a maximum computation effort. The
framework presented here distills successful methods we have
deployed in the field for over a decade, and assists in guiding
the organization of signal processing algorithms suitable for
any particular nonintrusive monitoring application.

III. MULTI-SCALE, MULTI-ALGORITHMIC FRAMEWORK

The multi-scale, multi-algorithmic framework organizes the
application of useful feature extraction and signal processing
for load identification, targeted for specific applications. It
is structured around three foundations of nonintrusive load
identification: data acquisition, scale, and variability of power
consumption. First, time-series electrical signals are collected
that give insight into the physics of the loads. Second, scales
of transient events are examined, since transient events can
occur on different time-scales. Finally, transients and steady
state power consumption can be variable, ranging from almost
deterministic in their predictability to practically stochastic,
which leads to differing approaches for load detection.

Figure 1 outlines the framework for load identification,
using example inputs and features. The main stages of the
identification process are labeled, and include:

• Data Acquisition and Pre-Processing extracts the phys-
ical characteristics of energy consumption.

• Event Scale Separation determines the scales for events.
• Event Detection determines load “signatures” for de-

tected events.
• Event Mapping matches events to loads.
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• Event Confirmation checks constraints between load
events.

A. Data Acquisition and Pre-Processing

Any data stream that captures the electrical nature of the
loads and reflects how the load consumes energy can be used
as input to the framework. Examples include voltages and
currents, the the real (P ) and reactive (Q) power, higher order
harmonics, or even impedances. For our applications, the raw
voltages and currents waveforms are typically sampled at 3
or 8 kHz. However, there are applications that may only need
a low sampling rate (i.e. 120 Hz), or a higher sampling rate,
in the order of MHz [3]. Any useful form can be an input to
the framework, such as raw voltage and current waveforms,
or the RMS voltage and current. The voltage and current can
be further processed into real (P ) and reactive (Q) power,
using the Sinefit algorithm [26]. P and Q correspond to the
envelopes of in-phase and quadrature current drawn by the
load relative to the voltage [17]. Sinefit effectively compresses
the high-rate raw current and voltage data into real, reactive,
and harmonic power components (3rd, 5th, and 7th order
harmonics in our case) at a rate congruent with the power
system line frequency (60 Hz). This promotes space-efficiency
while maintaining the richness of the original signal. In [26],
the accuracy of the Sinefit algorithm is demonstrated. It is also
compared with other methods, such as the Kalman filter, for
extracting envelopes of real, reactive, and harmonic content.
The example presented in this paper uses P and Q as inputs.

B. Event Scale Separation

Following data pre-processing, a multi-scale filter bank
separates out loads that operate on different scales, e.g., in
time. For instance, Fig. 2 shows an observation the of real
power (P ) of a shipboard graywater pump and the turn-
on transient of a commercial condenser fan with a soft-start
variable frequency drive (VFD). In this comparison example,
the graywater pump is short-cycling, so it turns off a few
seconds after turning on. It is necessary that the turn-on
and turn-off are properly detected in order to diagnose the
fault condition. For comparison, the turn-on transient of the
condenser fan takes about 15 seconds while it spins up from a
slow rpm to a fast rpm. The condenser fan has a single-phase
variable speed motor drive, which ramps up when the set point
changes in order to avoid power spikes. It would be difficult
to detect both the pump event and the condenser fan event
using an event detector on a single time-scale. It is very likely
that the observation of the longer transient will be interrupted
by other load events. To detect both events, a rolling median
filter is used on the power stream. A median filter eliminates
small fluctuations while preserving sharp edges [27]. Thus, a
long median filter preserves the longer transient, but removes
the events that occur at a smaller time-scale, such as the
graywater pump. Subtracting the medianed stream (PM ) from
the original data stream (P ) results in the residual stream (PR),

PR = P � PM (1)

Now the medianed stream contains the longer-scale events and
the residual stream contains the smaller-scale events. Various
length median filters can by employed if there are multiple

Fig. 2. Pump (top) and condenser fan (bottom) real power.

Fig. 3. Diagram for separating short-scale versus long-scale loads, for N
different length median filters, MF . PR is the residual stream and PM is
the median filtered stream.

time-scales present in a data stream. At each time-scale, there
are median streams and residual streams. This decomposition
is represented in Fig. 3.

C. Event Detection

1) Geometric Methods

Geometric features include some commonly used load char-
acteristics, such as steady-state power levels and transient
shapes for fundamental and higher order harmonics. An edge
detector or change of mean detector [28] can detect load
on and off events. A median filter can be applied to the
power streams prior to edge detection in order to preserve
sharp edge events, while removing noise [9], [27]. The edge
detector applied in this research uses the apparent power (S)
stream. From the P and Q streams, apparent power (S) is
calculated as, S =

p
P 2 +Q2. Converting to apparent power

simplifies load detection to a single data stream. This stream
is convolved against the Laplacian of a Gaussian [29] kernel
to compute the smoothed second-derivative. This effectively
maps step changes in apparent power to zero-crossings for
easier detection. An empirically-determined threshold is set to
remove zero-crossings that are due to small variations of the
resulting convolution. A zero-crossing detector is then used to
find the location of the steps.

After an on or off event is detected, the P and Q streams
for each phase are examined to calculate a set of features. An
on event produces a change in steady state, and a transient
which can be characterized by its peak, duration, and shape.
The peak is due to the in-rush current as a load turns on.
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(a) Turn on transient features.

(b) Turn off transient features.

Fig. 4. Signature features extracted from a (a) turn on transient and a (b)
turn off transient.

Fig. 4(a) provides a reference diagram for these features for a
conceptual turn-on transient. The duration of the transient, or
the time it takes for the load to reach steady state, is defined
as,

�ttran = tend � ton (2)

where ton is the time the load turns on and tend is the end of
the start-up transient. Changes in steady state real and reactive
powers after a load turns on are defined as the difference
between the median values over �tM length windows, before
and after the transient. The length of �tM is determined
empirically based on the rate of event generation at the site to
establish a reasonable steady state time. These windows are
shaded in Fig. 4. The changes in steady state are calculated
as,

x�,on = median(x�[tend < t  tend +�tM ])

�median(x�[ton ��tM  t < ton]).
(3)

Here, x can represent either the real or reactive power streams,
and � represents the phase (A,B,C). The transient real and
reactive peak values are calculated as,

x�,peak = max(x�[ton  t < tend])

�median(x�[tend < t  tend +�tM ]).
(4)

Because there is no transient peak when a load turns off, an
off event is only characterized by its change in steady state.
Fig. 4(b) provides a reference diagram for the features of a
conceptual off event. Changes in steady state real and reactive
powers after a load turns off are defined as the difference
between the median values over �tM length windows, before
and after the off event. The steady state changes in real and

Fig. 5. Correlation metric for transient matching.

reactive power for an off event are calculated as,
x�,off = median(x�[toff < t  toff +�tM ])

�median(x�[toff ��tM  t < toff ])
(5)

In addition to using Equations (3)-(5) to calculate the
features illustrated in Fig. 4, the on events and off events can
be characterized using a correlation algorithm. The correlation
algorithm matches the shape of the input data to known
exemplars, and is fully described in [9], [30]. Consider two
sampled waveforms f and g, where f is an observation or
input signal and g is a load exemplar or example waveform.
The correlation metric, M , is

M =
(f � f̄) · (g � ḡ)

|g � ḡ|2
(6)

where f̄ and ḡ are the mean of f and g, respectively, and are
subtracted from the original signals, f and g in order to remove
the DC offsets. When M approaches one, this indicates that the
exemplar and observation match in both shape and amplitude.
Figure 5 shows example observation data, an exemplar, and
the resulting correlation metric as the exemplar window slides
across the observation data.

2) Statistical Methods

For many, but not all loads, a high classification accuracy
can be achieved by the previously described geometric fea-
tures. However, statistical loads, which do not have consistent
behavior during turn-on or turn-off, are hard to identify
with geometric methods. Unlike On/Off loads with clear step
changes in steady state, the time it takes the load to reach
steady state is highly variable and it may deviate from steady
state during operation. For example, the ballast pump (BP)
from the SPENCER often does not draw its rated power when
the pump starts up or shuts down. This behavior is depicted in
Fig. 6. In order to correctly classify the BP, statistical methods
are added to the load identification framework. Statistical loads
are distinguished from loads with variable power due to power
electronics, as described in the next section. If the variability is
due to power electronics there will be substantial higher order
harmonics due to the non-sinusoidal current waveforms. In
contrast, statistical loads do not exhibit significant higher order
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Fig. 6. Several runs of a ballast pump demonstrate inconsistent turn-on and
turn-off behavior.

Fig. 7. Two loads that exhibit behavior in the residual stream at this time-
scale.

harmonics, and the variability in power draw are consequences
of the physical task the load is performing. Two statistical
measurements are used for the analysis. The first is a zero-
crossing metric, and the second uses the empirical cumulative
distribution function (ECDF) to measure distribution. First a
relatively wide window rolling median filter preserves the
edges due to load on or off events, but removes variations
that occur on smaller time-scales. Since the smaller time-scale
variations are of interest for the statistical analysis, the residual
stream (PR) is computed as the difference of the observed
power minus the medianed filtered stream (Eq. (1)). Multiple
size median filters can help distinguish activity that occurs on
different time-scales (Fig. 3). Figure 7 shows P and PR for
two loads: the controllable pitch propeller pump (CPP) and
ballast pump (BP).

The residual stream is then processed as shown in Fig. 8.
First, PR is decimated and windowed. The windowed stream
is detrended by subtracting out the mean, which allows for
analysis on the variations around zero. The zero-crossing
metric is the number of zero-crossings for each detrended
waveform normalized by the length of the signal N , i.e.,

ZC =
# of zero-crossings

N
(7)

For the ECDF statistic, two nonparametric, distribution-free
tests to measure the equality of one-dimensional probability
distributions are considered: 1)The Kolmogorov-Smirnov (KS)
test and 2)The Cramer-von Mises (CvM) test [31]. Both tests
compare the distance between the ECDF of a sample and
reference ECDF distribution. An ECDF can be denoted as
F̂n(x) = P̂n(X  x), where n is the number of data samples,

Fig. 8. Block diagram for pre-processing before ECDF and ZC analysis

Fig. 9. Histogram and ECDF for two example loads, and the KS statistic.

or length of the signal. This is given by,

F̂n(x) =
1

n

nX

i=1

I(xi  x) (8)

where I is the indicator function, given by

I(xi  x) =

(
1, if xi  x

0, if xi > x
(9)

For each data window, the ECDF is estimated by creating
a histogram of the data values, and then applying a cumu-
lative sum. As an example, the histogram and ECDF for the
Pdetrended stream are shown two different loads in Fig. 9. The
histogram and ECDF both show that Pdetrended for Load 2 has
a larger spread of values then Load 1. The KS test statistic,
Dn, represents the least upper bound (or maximum) of the
pointwise difference between the sample distribution function,
Fn(x) and the known exemplar distribution function, F0(x),

Dn = max
x

���F̂n(x)� F0(x)
��� . (10)

Figure 9 shows Dn with an arrow. Alternatively, the Cramer-
von Mises (CvM) criterion, w2, uses the integration of the
squared value of the difference between Fn(x) and F0(x),

w2 =

Z 1

�1
(F̂n(x)� F0(x))

2dF0(x). (11)

The ZC and ECDF metrics are used together to identify
loads such as the ballast pump, an example of which will
be explained in Section IV.

3) Continuous Methods

Tracking the operation of continuously variable loads that
demand ever-changing power arises for variable speed drives
(VSDs), light dimmers, and other loads controlled by power
electronics. These loads can not be strictly identified by turn-
on and turn-off transients because they do not always have a
repeatable power consumption pattern. However, the current
waveforms of these loads consist of structural features that
can be identified in both the time and frequency domains
[15]. The power electronics contribute to non-sinusoidal cur-
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rent waveforms, and thus higher order harmonics for these
loads. A waveform-based estimator described in [15] uses
the fundamental and higher harmonic current waveforms to
disaggregate the power consumption of variable power loads
with harmonic signatures.

D. Event Mapping and Event Confirmation

The features for each event are then mapped to a specific
load, using one of various pattern recognition approaches.
This can be one of the many approaches described in Section
II, including supervised or unsupervised techniques. After an
initial mapping, constraints need to be checked to ensure a
correct output. The first check is to ensure that two consecutive
on events or off events are not outputted for a given load.
This would indicate that either an event was missed, an event
was misclassified, or a non-event was classified as an event.
In the case of misclassification, the process goes back to the
event mapping and reclassifies or determines that it is not an
event. This is represented by the feedback arrows in Fig. 1.
In the case of a missed event, a decision is made about which
event to display. Depending on the application, the decision
can be made to either reduce the possibility of incorrectly
displaying that a load is energized or to reduce the possibility
of incorrectly displaying that a load is secured. Constraints are
also checked to be used for procedural oversight. The opera-
tion of FSM loads and interdependent loads are checked for
standard operating procedures (SOP), ensuring that equipment
or systems that go through multiple stages of operation are
sequenced properly. In addition, if the number of loads and
their expected power draw is known, optimization methods
such as linear integer programming [14] can be integrated to
aid in ensuring the correct output.

IV. SHIPBOARD CASE STUDY

Typically, “customers” for nonintrusive monitoring seek
answers in one or more of three categories of information:
energy scorekeeping, operator activity tracking, and inputs for
condition-based maintenance (CBM). Based on the load mix
at a site and the customer’s monitoring needs, we use the
framework as a guide to prepare specific NILM installations
for different applications. An installation on the USCGC
SPENCER serves as an example here. The SPENCER crew
cares primarily about fault detection (CBM) and activity
tracking. The specific needs of the SPENCER crew and the
characteristics of the known set of loads lead to specific mod-
ifications of the overall framework to provide monitoring with
a minimal computational burden. This modified framework is
shown in Fig. 10.

For example, none of the loads in the SPENCER engineer-
ing space exhibit a slow spin-up compared to the other loads in
the space. Thus, a single time scale provides an adequate time
series for geometric event detection, and the computational
burden of computing multiple time scale streams can be
deferred to a later stage of the framework. The SPENCER
contains no continuously variable loads from power elec-
tronics, thus avoiding the need for continuous load tracking.
Two SPENCER loads of interest (controllable pitch propeller
pump (CPP) and ballast pump (BP)) require statistical methods

Fig. 10. Modified multi-scale, multi-algorithmic framework for shipboard
application.

TABLE I
MONITORED LOADS IN ENGINE ROOM

Power Delta PF Port Stbd
Load

Rating Phases Panel Panel

Main diesel engine (MDE) keep-warm system

Lube oil (LO) heater 12 kW 3� 1.0 x x
Jacket water (JW) heater 9.0 kW 3� 1.0 x x

Prelube (PL) Pump 2.2 kW 3� 0.82 x x
Ship service diesel generator (SSDG) keep-warm system

Jacket water (JW) heater 7.5 kW 3� 1.0 x x
Lube oil (LO) heater 1.3 kW 1� 1.0 x x

Diesel oil purification (DOP) system

Separation chamber motor 9.5 kW 3� 0.89 x
Feed pump 2.6 kW 3� 0.80 x

Additional engine room loads

Controllable pitch propeller
hydraulic pump (CPP) 7.5 kW 3� 0.82 x x

Graywater pumps 3.7 kW 3� 0.85 x
Auxillary saltwater

cooling pump (ASW) 7.5 kW 3� 0.85 x

Ballast pump (BP) 6.7 kW 3� 0.90 x

employed on a fine time scale for complete identification.
These two loads exhibit geometric initial transients. Hence,
the median-filtered fine time scale is only computed when
necessary, after observing a startup transient that potentially
indicates the need, as indicated by the switch in Fig. 10.

The ship has two NILM meters monitoring two electrical
subpanels (PORT and STARBOARD (STBD)) in the engine
room. The current and voltages are sampled at 8kHz, and
converted to 60 Hz P and Q using Sinefit as described in
Section III. The 60 Hz P and Q are used as input to the load
identification framework for this case-study. Data is stored
in a high-speed time-series database, NilmDB, allowing for
high-speed and low-bandwidth access to the data [30]. All of
the monitored engine room loads are listed in Table I. These
monitored subpanels are crucial to the proper operation of ship
propulsion, power generation, and auxiliary services. For clas-
sification, additional load classes are created for combinations
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Fig. 11. Pdetrended,6 and Pdetrended,30 show activity on the CPP and the
BP on different time-scales.

of the main diesel engine (MDE) system loads that frequently
actuate or secure together. For instance, the MDE lube oil
heater, jacket water heater, and prelube pump often actuate
together, creating a repeatable on-transient. Additionally, the
diesel oil purifier (DOP) is a FSM load so it has a class for
each distinct state.

A. Geometric Methods

For the geometric features, all events were detected on a
single time-scale. First, 101-point median filters were used
on the 60 Hz input P and Q streams, in order to remove
small fluctuations. The size of the filter was determined
empirically so that all the desired events would be preserved.
A neural network (NN) with two hidden layers was used for
classification. The inputs to the NNs were the steady state,
transient peak, and the correlation algorithm output for on

events and the steady state and correlation algorithm output
for off events. For calculating features, �tM for (3)-(5) was
chosen to be 0.5 seconds. For the correlation algorithm, each
known load exemplar was matched to the input stream. As
input to the NN, the metric used was 1� |M | (Fig. 5). Using
this matching algorithm assumes that all loads are known, thus
the length of the input vector depends on the number of load
classes.

B. Statistical Methods

The distinctive transient peak when the BP turns on permits
using geometric methods alone to classify BP turn-on events.
However, due to the inconsistent turn-off behavior as shown
in Fig. 6, it is difficult to correctly classify the BP turn-
offs using geometric features. The use of statistical metrics
aids in the correct identification of BP off events. However,
since the STBD subpanel has two loads with significant
activity in the residual stream, CPP and BP, the two must be
distinguished from each other. To do this, Pdetrended, as shown
in Fig. 11 was calculated on streams separated by 6 second
and 30 second median filters, represented as Pdetrended,6 and
Pdetrended,30 respectively. Qdetrended,30 is also calculated. As
indicated in Fig. 8, the power streams, PR and QR, were
decimated from a 60 Hz to 10 Hz frequency, windowed into
intervals of 50 seconds, and detrended prior to calculating
statistical metrics. As the window moves across the data
stream, a 80% window overlap is used. The statistical features
were only calculated for a window if the standard deviation
of Pdetrended,30 was greater than a set threshold, because that
indicates significant activity in the residual stream. CPP data

Fig. 12. CVM metrics (wstbd,P,6 and wstbd,P,30) for CPP and BP.

is from October 2017 and BP data is from October 2016
to November 2017 (excluding January 20 to February 2017,
which was part of the testing dataset). For CPP and BP, there
were 329 and 319 windows that displayed significant activity
in the residual stream, respectively.

For this application, the CvM criterion was chosen over
the KS criterion because it considers the entire distribution
within the specified range. Contrarily, the KS criterion ignores
everything except the maximum difference, making it more
sensitive in the center of the distribution. To represent F0 from
(11), average ECDF curves of past load actuations were used
to create ECDF models for each of the loads. Thus, for the
STBD subpanel, ECDF curves Fcpp and Fbp are generated.
The integration was estimated by the Riemann left hand sum,

w2 =
D�1X

i=0

(F̂n[xi]� F0[xi])
2�x, (12)

where D is the number of points in the ECDF and �x is
the distance between x values. In this implementation, D =
1000, and x ranged from -2000 to 2000 for the 30 second time-
scale and from -1000 to 1000 for the 6 second time-scale. The
metric used for classification was the difference in w values
for the two possible loads, given as, wstbd = wcpp � wbp.
Figure 12 shows a scatter plot of the wstbd metric for real
power on the 30 second and 6 seconds time-scales, showing
a clear distinction between the CPP and BP metric values.
These variations that occur at different time-scales are a result
of the physical task the load is performing. The oscillations
in power for the BP can likely be attributed to air pockets
within the bilge and ballast pumping system. When pumping
out bilges and ballast tanks, operators will try to get the tanks
and bilges to the lowest level possible, causing the pump to
take in a mixture of air and water at the inlet to the pump.
When the pump is then secured and suction is shifted to a new
tank, this air remains in the system and leads to a prolonged
start sequence and rapid variations in power draw. Contrarily,
the oscillations in power for the CPP are due to the manual
operation of the pitch of the propeller blades as the operator
is steering the ship. The CPP allows the operator to adjust the
amount of thrust generated by a propulsor while maintaining
a fixed rotational speed. These mechanical operations of the
loads result in the BP having much more activity occurring at
the shorter timescale compared to the CPP.

For ZC, only the 30 second time-scale was considered,
since the 6-second time scale does not preserve the slow
variations of the CPP. The average ZC metrics for CPP and BP
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Fig. 13. Windows of Pdetrended for CPP and BP showing zero-crossings.

Fig. 14. Diesel oil purifier operating sequence.

were 0.013 and 0.066, respectively. Figure 13 shows example
windows of Pdetrended and detected zero-crossings for the
CPP and BP. On average the BP has more zero-crossings than
the CPP, due to the rapid power variations of the BP.

The CvM metrics and ZC metric were put in a feature vector
to be used for classification,

(wstbd,P,30 wstbd,Q,30 wstbd,P,6 ZCP,30) (13)

For testing of the statistical methods for the STBD subpanel,
new data points of the form of (13) were labeled by using a
k-nearest neighbor (k-NN) classifier using k = 3. To save
computation, the statistical metrics were only calculated after
a BP on event was detected. When the statistical metrics
indicated BP activity, the algorithm looked for an off event that
may have been misclassified as another load due to the non-
repeatable off transient and re-labeled it as the BP off event.
It was not the case in this case-study, but if the two loads
being compared had similar geometric metrics, the statistical
metrics could be used for distinguishing both the on events
and off events of both loads.

C. Procedural Oversight

After disaggregating load events, constraints were checked
to monitor the operation of FSM loads such as the DOP and
of interdependent loads, such as the loads that make up the
MDE system. The DOP has multiple states, but requires only
the push of a button for a watchstander to operate. Thus a
NILM can monitor the DOP for improper operation. Figure
14 shows a depiction of the power stream of the DOP and its
finite states. For the MDE system, normally when the MDE
is started, two distinct events should occur: (1) the LO and
JW heaters turning off once the “start” button is pressed and
(2) the prelube pump turning off 1-3 seconds later, once the
engine has reached 150 RPM. The top and bottom plots in
Fig. 15 show examples of proper and improper operation of
the MDE system respectively. The NILM can alert operators
to deviation from standard operation procedures.

Fig. 15. Correct (top) and incorrect (bottom) operation of MDE system loads.

D. Results

The described framework was tested on busy intervals of
data from SPENCER, using the Joule [32] data processing
framework. Joule is a robust tool that models the data pipeline
as a series of processing “modules” with “streams” of informa-
tion passing between them. Data flows between modules with-
out needing to access the database as an intermediary, allowing
for efficient, real-time monitoring of load events. Different
applications require different accuracy metrics. For example,
an interface that gives users their appliance breakdown in
real-time is significantly different than determining which
appliances are using the most energy over a longer time-scale.
The former values instantaneous, real-time accuracy, while the
latter permits off-line analysis for greater accuracy [4]. For
the given application, since the crew aboard SPENCER cares
about the breakdown of loads being used at a given moment,
it is crucial that individual loads are accurately detected in
real-time. Thus, the accuracy for each class was evaluated by
considering the following parameters [33]:

• True Positive (TP ): a load event occurred and was
correctly identified

• False Positive (FP ): a load event was classified, but that
event did not occur

• False Negative (FN ): a load event occurred but that event
was not classified

These parameters were used to determine the classifier’s recall
and precision, which answers two fundamental questions:
(1) What is the likelihood that a load event is reported?
(recall)
(2) What is the likelihood that a reported event is correct?
(precision)

recall =
TP

TP + FN
, precision =

TP

TP + FP
(14)

The results of running the identification algorithm on one
month of SPENCER data from January 20 to February 20,
2017 are presented in Table II. For training using the geometric
features, data from was October 1 to 20, 2016 (at sea) and
December 14 to 18, 2016 (in-port) were used to train a NN.
For the statistical features, the models described in Section IV-
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TABLE II
ACCURACY OF CLASSIFYING STBD AND PORT PANEL EVENTS

Load TP precision recall

ON OFF ON OFF ON OFF
Main diesel engine (MDE) keep-warm system - STBD

JW Heater 44 44 1 1 1 1
LO Heater 44 44 1 0.978 1 0.978

Prelube Pump 40 40 1 0.976 0.930 0.909
Ship service diesel generator (SSDG) keep-warm system - STBD

JW Heater 18 18 1 1 1 1
LO Heater 353 353 0.997 1 0.981 0.986

Diesel Oil Purification (DOP) System

Separation
Chamber Motor 55 55 0.965 0.965 0.965 0.965

Feed Pump 41 41 0.976 0.976 1 1
Additional engine room loads

Graywater Pump 1645 1645 0.999 0.999 0.999 0.999
CPP Pump - STBD 74 74 1 1 1 1

Ballast Pump
(only geometric) 22 22 1 1 0.629 0.629

Ballast Pump
(geometric and

statistical)
32 32 1 1 0.914 0.914

B were used. To reduce the possibility of incorrectly displaying
that a load was energized, if two consecutive on events were
detected, the first was ignored. Likewise, if two consecutive
off events were detected, the second was ignored.

To accurately classify the majority of the loads, use of
geometric methods was sufficient. The precision and recall
values are close to or equal to one, which indicates near perfect
performance in identifying a specific class. Because each load
is performing a different task and is operated through different
controls, there is a wide variation in the number of TP. For
instance, the graywater pump is operated automatically by a
controller that uses conductivity sensors to detect water levels
and provide feedback for pump control. In contrast, the DOP
system is run manually by an operator when diesel oil needs to
be cleaned. As a result, under normal operation the graywater
pump runs everyday up to a few times an hour, while the
DOP does not run everyday and only up to a few times a day.
Because the MDE system consists of interdependent loads,
there are a similar number of actuations for each part of its
system, including the lubeoil heater, jacketwater heater, and
prelube pump. The few FN and FP across various loads are
due to variations in the power data, load failures, and because
loads sometimes actuate or secure near eachother. The only
load that does not have good performance with geometric
methods is the ballast pump. For the ballast pump, geometric
methods only accurately classified 63% of the off events,
leading to the on events being ignored. With the addition
of statistical methods, the classification accuracy increased to
91%. Using geometric methods alone was unable to correctly
classify the ballast bump, because the ballast pump often
turned off while it was drawing less than the rated power. For
some applications, such as energy scorekeeping, the addition
of the statistical method would be unnecessary. However,
for shipboard watchstanding and maintenance applications a
single missed event can lead to a missed detection of failure
in mission critical equipment. The addition of the statistical
method greatly improves the deployability of NILM in this
case. These results are an example of an application-centric

use of NILM, tailoring both the identification algorithms and
assessments of their accuracy for a specific application. This
demonstration of the utility of the framework is one of our
most recent applications taken from over a decade of field data
testing the framework. Additional similarly successful results
and applications include onboard US Coast Guard ships [7]–
[9], at a public school [10], and on a US Army microgrid
energized by diesel generators [11].

V. CONCLUSION

The application of the load identification framework was
demonstrated with power system data from the USCG cutter
SPENCER. The results demonstrate the applicability of the
framework for a variety of load types on the cutter, including
On/Off, FSM, and statistical loads. The geometric methods
were used for all of the On/Off loads and demonstrated
near perfect performance in identifying loads , with precision
and recall values close to one. Procedural oversight aided in
quantifying the results of FSM and interdependent systems.
Finally, the statistical methods and multiple time-scales were
utilized for the statistical loads.

Nonintrusive power monitoring enables access to informa-
tion that was previously unattainable. With flexible sensor
solutions such as non-contact sensors [34] and graphical
platforms such as the NILM dashboard [13], new doors are
opened to apply nonintrusive monitoring for energy score-
keeping, activity tracking, fault detection, and condition-based
maintenance. Even with these new possibilities, nonintrusive
monitoring will only be successful if signal processing ap-
proaches are tailored to focus on customer needs. For example,
an energy scorekeeping application may not require 100%
identification of all loads in the system, just the critical
equipment. The framework presented in this paper is adaptable
to any application. The framework’s applicability has been
demonstrated on various field demonstrations. By excluding
or including algorithms and scales, the multi-scale, multi-
algorithmic framework is a guide for allocating the tools to
balance load disaggregation with computing effort for the
application at hand.
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